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Abstract

Ultrasound Bubble Extraction

In photo-acoustic study, focused ultrasound waves in water could contain energy per
cubic large enough to tore the water molecules apart and generate vacuum bubbles in
the water. This phenomenon has always been mysterious. It is expected to be widely
studies for its potential of application in non-invasive surgery. Laser shadowgraphy
imaging is used to capture the those bubbles. To better understand the mechanism in
the formation of these bubbles, we need to count the number and area of the bubbles
in a set period of time. However, this counting task could be far too demanding
for human inspectors. To resolve this dilemma, this project implement an adapted
K-NN(K nearest neighbor) background segmentation algorithm for bubble detection
using Python and OpenCV. This widely used machine learning approach yielded
satisfying result for our specific scenario, with the small bubble detection accuracy
over 90% and big bubble detection accuracy over 85%. Also, we brought forward a
new algorithm tackling the problem of counting overlapping bubbles. Traditional
circle detection algorithm is typically based on Hough circle transformation and is
not suitable for noisy or overlapping circles. Our solution, on the other hand, solves
the problem with a fast and robust algorithm that can detect and count the numbers
and positions of overlapping circles with high accuracy using multiple techniques.
The application of this algorithm is not confined in bubble counting in supersonic
shadowgraph only. It can also be applied to many other fields such as automatic cell
counting in medical field.

Ultrasound Signal Recovery

In monitor the cavitation behavior with fiber hydrophone ultrasound detector, the
signal energy level is almost identical to that of the white noise. This makes it hard
to locate and see the actual position and shape of the signal. We implement the
wavelet transform to investigate the frequency and spatial domain position of the
signal. Then, with multiple level of noise filtering, the useful signal can be extracted
and showed in real-time. The tested lag is estimated to be less than one second.
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1 Background

Photo-acoustic effect is the formation of acoustic waves upon the absorption of
modulated or pulsed light mainly through thermoplastic expansion. It has been
widely applied in medical imaging, spectroscopy, photo-acoustic spectrum analysis,
defect detection and therapeutic treatment. By implementing a highly-efficient photo-
acoustic generation layer made from candle soot/PDMS composite and deposit onto
a concave BK7 glass lens, we have developed a self-focusing PA lens that can focus
ultrasound waves in a ellipsoid of 90m(minor axis) by 200m(major axis). With an
input laser fluence of 7.5mJ/cm2, the focused region can reach a negative pressure of
40MPa, which exceeds the cavitation thresholds in water in free space. Therefore, we
have demonstrated controlled cavitation behavior in a submillimeter region, and it
has been applied in soft-tissue ablation, nozzle-free jetting and needle-free injection.
The cavitation bubbles are monitored simultaneously by a shadowgraph imaging
system excited by laser. In order to study the cavitation probability under different
pressure, we propose to apply a adapted KNN background segmentation method for
bubble counting in the shadowgraph images, the method is based on transient and
dark feature of the bubbles.

Instead of imaging guidance by laser shadowgraph, we also monitor the cavitation
behavior with fiber hydrophone ultrasound detector. The advantage of FP is the
high damage threshold so that it can measure signals up to hundreds of MPa, which
will be good enough for measure any intense focused pressure fields or shock waves.
However, the sensitivity of the system is much limited and the SNR is low without
averaging, therefore, limiting the application for bubble signal detection. We propose
here a wavelet transformation method to locate the time and spatial location of the
interested signal.

This study will not only help better understanding the cavitation threshold at different
pressure, but also help us to compare the cavitation probability in different condition
more accurately. At the same time, with the noise elimination algorithm, we are able
to increase the SNR of the FP detector in 3 times,
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2 Object Specification

2.1 Laser shadowgraphy - Detect & Count Bubbles

Laser shadowgraphy images are recorded as pseudocolor RGB frames. In order to
count the total number of bubbles generated, the first step is to extract and segment
the regions of interest (ROI). Any ellipse detection algorithm won’t work in our case
due to the limited resolution of the camera and small size of the bubble. Therefore,
we decided to take advantage of two key features of the bubble: color and transiency.

In lab practice, shadowgraph videos are commonly recorded at 12 frames per second
(about 80 ms period). There is fundamental difference in small bubbles with occasional
occurrence and large bubbles that endures for long time.

For the small bubbles, their life cycle is at a comparable level to the frame rate.
Hence, bubbles appear and disappear quickly in the video. Consider this “transient”
nature of bubbles, we implemented a background segmentation algorithm as the first
step of feature extraction. Next, to separate featured bubbles in the foreground,
we applied morphological operation and black color segmentation multiple times to
extract them.

However, for the large bubbles, their life cycle is longer and there is the problem as
overlapping may occur. So it would require an additional step to count exactly how
many bubbles are actually overlapping.

Chapter 3 discusses how we extract the desired feature - bubbles from the recorded
laser shadowgraphy image. Small bubbles are directed counted and big or overlap
bubbles are sent to the overlapping bubble counting algorithm discussed in Chapter 4
to decide exactly how many bubbles are overlapped. There results are combined to
yield a resulting diagram showing bubble number and size as illustrated in Figure 13
and Figure 12.
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2.2 Ultrasound Waves - Denoise & Recover Signal

Because the invisibility of ultrasonic wave, there is no direct method to see ultrasonic
wave. In our experiment, we placed a laser generator in the one side of the water tank
and we placed a light sensor in another side of the water tank. The laser generator
would emit laser toward the water and the light sensor would generate electric signal
whose frequency and amplitude are relative to light property. When there occurs
waves in the water, the water refractive index will change which cause light intensity
changed. So The light intensity signal measured by light sensor can reflect some
characters of ultrasonic wave.

Previous methods involve taking average of large number of signal samples. However,
this approach is time-consuming, painstaking and hard to adjust. This obstacle
inspires us to bring about a new method to denoise the signal within several samples
using the knowledge from signal processing and wavelet transform. We also aim to
embed our matlab code into the original experiment terminal so that the inspector
can see the recovered clear signal in real time.
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3 Bubble Detection and Segmentation

The most distinctive feature that we utilize for bubble detection is their transient
existence. By modeling the relatively stable background of a video stream, we
obtain the foreground mask. The mask consists of three types of pixels: background,
foreground and shadow. When applied on the original image, pixels whose position
on the mask is background are set to pure black while those whose position on the
mask is foreground remain unchanged - shadows are sorted for different conditions.
It works as though we used a "mask" to segment the regions of interest.

General Structure

KNN 
Foreground 

Segmentaion

Foreground 
Mask

Threshholding & Hole 
Filling

General ROI 
Mask

Extracted 
ROIs

Dialiation & 
Contour 

Segmentaion

For each ROI

Binary ROI

Black Color 
Threshholding

Refined ROI 
Mask

Opening 
after Closing

Current Frame & 
Previous Frame

Contour 
Segmentation

Refined ROIs

Figure 1: Foreground Detection General Structure
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Before segmenting the bubble, we first took several per-processing techniques:

• Convert to Gray Scale The original colored shadowgraph is captured with green
laser reflected and refracted in the water box, and thus only have the color
green. We convert it to 8-bit gray-scale so that we only need to deal with one
dimension of data.

• Histogram Equalization To minimize the influence of light intensity change, we
apply histogram equalization. An ideal equalization would result in the even
distribution of number of pixels on all the gray-scale levels, increase contrast
and above all sharpness.

• Gaussian Blur Background segmentation is sensitive to small noise. So we hope
to best reduce some random noise in the pre-processing phase. There could be
the trade off as to blur the image, but as long as this is contained in acceptable
level, blurriness won’t effect detection.

(a) Original Image (b) Converted to Gray-Scale

(c) After Histogram Equalization (d) After Gaussian Blur

Figure 2: Result of Preprocessing
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3.1 Foreground Segmentation Overview

Foreground detection is among the most widely discussed issues in image processing
and computer vision, often serves as the preprocessing step for higher leveled tasks.
[1]Many of the practical applications do not take interest in the entire image, but
rather focus on certain objects in the image. Foreground detection aims to extract the
information of change by segmenting the region of interest (ROI) from the original
image. Usually, a sequence of video frames is needed as the input, and the segmented
ROI as the output.

The major challenge of foreground detection system include:

• vibration or small deviance introduced by the camera

• lighting intensity change, random noise and periodic movements
e.g. waves and shadows and long term slow changes.

• ghosting effect and halos

Any foreground detection techniques involve the modeling of background. By evaluat-
ing the difference of the input image to the background, the foreground information is
extracted. However, to rigorously define and establish the background image can be
challenging, especially when there is strong variation in the color, intensity, shadows,
quaility, nosie, interior and exterior etc. in the image stream. Scenarios where these
techniques apply tend to be diverse. Systems need to be able to adapt to these changes.
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(a) Scattered Detection caused by drastic camera move-
ment

(b) False detection of trees on the background

(c) Ghosting effect behind the human figure

(d) Halos in the center of an moving hand

Figure 3: Typical Failures of Foreground Detection[2][3]
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3.2 Previous Works and Ideas

The background can be featured as all the pixels of the objects in the scene that is
relatively still compared to the foreground pixels, which are relatively versatile. The
key to foreground detection is to measure and distinguish between the extent of the
variation on different positions. Here are the few fundamental ideas that lays the
corner stone for any advanced technique.

3.2.1 Background Segmentation

The rationale in the approach is that of detecting the moving objects from the
difference between the current frame and a reference frame, often called "background
image", or "background model".

F (t) = I(t)−B (1)

whereas the F (t) denotes the foreground of the current frame, I(t) denotes the original
image and B denotes the set background model.

The benefit of background subtracting is that it will never cause ghosting and also
effectively extract any change in the scene. But this approach is only effective when
we have already known the background, the camera is still and the scene is not prone
to any change within a set of time.

3.2.2 Inter Frame Subtraction

This method subtract from the current frame with previous frame and then apply
binary threshold segmentation to extract the difference.

difference(t) =

{
1 f(t)− f(t− t0) ≥ thresh
0 f(t)− f(t− t0) < thresh

(2)

Usually, the gap t0 is set to 1. However, subtracting with neighboring frame increase
the likelihood of introducing ghosting effect. Although this can be easily eliminated
by subtracting with more previous frames, to define the exact gap between those
two can be demanding, since there is the trade off that subtracting distant frames
(increasing t0) reduce ghosting effect but is also likely to miss out real foreground.

The advantage of inter frame subtraction is that the idea is straight forward and it
is not prone to the variation in lighting conditions. However, the more conspicuous
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downsides including sensitivity to camera motion, failure in detecting still or slow
object and the difficulty in choosing threshold value all make it not applicable in
actual situations.

3.2.3 Integrate the Ideas - Adaptive Method

The problem with naive background subtracting is that with a stale background model,
should any change take place in the current frame, the difference will be wrongly
detected as foreground. Hence, a method dynamically updating the background
model must be introduced to adapt to environmental change. Noticing that for inter
frame subtracting, there is very good performance for adaptive change, we utilize the
idea to update the background model in a given amount of time.

To know when and where, also how long the period is to calculate and update the
new background, many methods introduce probabilistic models for evaluating the
density function of one particular pixel. Some of the recent efforts A pixel in the
current frame is regarded as a background pixel if its new value fits into its density
function. The next step would be to estimate appropriate values for the variances of
the pixel intensity levels from the image. Some of the recent efforts furthered the
idea, such as belief propagation algorithm[4] or Histogram difference modeling[5].

The most widely adopted one is the Gaussian mixture model (GMM) proposed
for background subtracting[6] and efficient update equations were given[7]. GMM
has been improved by many previous works, with added hysteresis threshold[8] and
tilt calibration[9], however, after implementing the so far the most comprehensive
GMM approach, we found that it performed poorly. The reason could include the
strong background varying noise which make the hypothesized Gaussian threshold
not so accurate. And thus we turned to another rather innovative idea utilizing the
K-Nearest-Neighbor(KNN) unsupervised learning algorithm structure.[10]

3.3 KNN Foreground Segmentation Algorithm

The value of a pixel at time t in gray-scale is denoted by x(t). The pixel based
background subtraction involves decision if the pixel belongs to the background (BG)
or foreground object (FG). The pixel is more likely to belong to the background if

p(BG|x(t))
p(FG|x(t))

=
p(x(t)|BG)p(BG)
p(x(t)|BG)p(FG)

(3)
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is larger than 1 and vice versa. Most modern day techniques assume uniform
distribution for the appearance of the foreground object p(x(t)|FG), because we can
never know when and how long will the foreground object persist. KNN segmentation
also had this supposition.

But Unlike the GMM approach which presuppose the background pixel density
function into Gaussian distribution, KNN segmentation start by using a uniform
kernel to estimate the density function and dynamically update it.

3.3.1 Introducing KNN

KNN is one of the most basic unsupervised learning algorithms for classification. It
is commonly used for its easy interpretation and low calculation time. The objective
of any classification model is to sort one target into its corresponding class. Figure 4
help illustrate how KNN works to fulfil its sorting task.

Figure 4: How KNN Works[11]

The shapes are sorted into two classes based on two attributes: x and y coordinate,
namely circles and squares. Now a shape unknown of its class awaits to be classified
as either circle or square. KNN takes the so called “voting” mechanism. The nearest
K samples are eligible to vote, and hence the name KNN. Circles would try to vote
the star to be a circle, while squares vote it to be a square. Sometimes every vote
is timed by a factor, the so called "significance" of the vote. And by summing up
all the votes, we reach a conclusion. In this case, 3 nearest neighbors voted circle,
therefore the star is sorted into the class circle. The choice of the parameter K is
vital to the correct classification.
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3.3.2 Time Domain KNN Classification

To sort all the pixels x(t) of the current frame f(xp, t) - xp denotes the position of
the pixel - into either class FG or BG. The first step is to compare the intensity level
x(t) with kt other pixels on the same position of the previous frames.

Estimating Background Probabilistic Density Function

Each of the history pixel x(t−tk) here has an distinctive probabilistic density function
for the potential background. Density estimation using a uniform kernel start by
counting the number of sample kt from the set ζ: {x(t−tk) || tk ∈ [1 : kt]} that lies
within the threshold distance D on intensity level (gray-scale 0 255). The estimate is
given by

p̂(x|ζ,BG) = 1

kt

t∑
t−kt

ξ

(
|x(t−tk) − x(t)|

D

)
, where tk ∈ [1 : kt] (4)

the kernal function here is:

ξ(u) =

{
1 u < thresh

0 u ≥ thresh
(5)

Typically, the thresh here is set to 0.5. In practice, the purpose of the kernel function
is only to smooth the estimate, but the gray-scale threshold distance D is critical.
Elgammal[12] proposed using D = med/(0.68

√
2), where the med here denotes the

median value of |x(t−tk) − x(t)| from ζ.

Fixed kernel size D for the whole density function might not be the best choice.
The so called "balloon estimator" adapts the kernel size at each estimation point x.
Instead of trying to find the globally optimal D, we could increase the width D of the
kernel for each new point x until a fixed amount of data k is covered. In this way
we get large kernels in the areas with a small number of samples and smaller kernels
in the densely populated areas. The balloon estimate is often used for classification
problems since it is related to the kNN classification. One nearest neighbor is common
but to be more robust to outliers we use k = [0.1 ∗ kt].

Voting On the Current pixel

After obtaining the density function for background, we are now able to compare the
posibility between background and foreground, since the distribution of foreground is
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uniform. A pixel is sorted into the background if

p̂(x|BG) > Pthr

where Pthr =
p(x|FG)p(FG)

p(BG)

(6)

p(FG) and p(BG) are calculated via the average result of the previous kt samples.

p(BG/FG) =
1

kt

t∑
t−kt

p̂(x(t−tk)|BG/FG) (7)

Figure 5 shows an intuitive look of how the current pixel is to be judged by previous
votes, although we have added much probabilistic model to achieve more adaptive
performance, the basic idea coinside with naive k-NN.

Figure 5: Time Domain Classification

f(xp, t)|xp0 : set ζ : {x(t−tk) || tk ∈ [1 : kt]} ∼ x(t) (8)
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The x-axis shows each individual pixel on the same position at different time. The
y-axis shows the intensity level of that particular pixel on gray-scale. The red
rectangles in Figure 5 shows that the pixel was previous sorted into foreground and
green rectangles sorted into background. After applying the mentioned math, the
blue pixel will be classified as background, also matches the intuitive feeling that
it is "most similar" to the previous background pixels.[8 pt] This step perfectly
eliminates "ghosting effect" while stay robust in detecting any movement thanks to
the probabilistic approach and dynamic update strategy.

3.3.3 Spatial Domain KNN Classification

This step serves to check the result of time domain classification. It takes into account
K pixels that is no farther than a threshold distance to the current pixel, and allow
them to vote, whose voting weight correspond to their distance to the pixel.

Figure 6: Spatial Domain Classification

Suppose the center pixel c has k neighboring pixels ni whose Euclidean distance to
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the center is di. A fixed distance thresh Dth is set to enclose k samples to vote. The
result is summed up as

Ccheck =
1

k

k∑
i=0

tagk ·N(µ, σ2) (9)

where tag is the classification result of the previous step. 1 if foreground and -1 if
background. The new tag is set to 1(foreground) if Ccheck > 0 and 0(background) if
Ccheck ≤ 0.

If new tag result coincide with its previous tag, then the class is accepted and
background model updated. If it doesn’t, the pixel is then sent into shadow detection
function, which decides whether it belongs to the class shadow according to the extent
of variance from its precedent pixel.

The spatial classification step help in increasing the robustness against slow moving
objects and periodic movement. By increasing the threshold distance and including
more spatial samples, the model would be more stable not to segment out less drastic
changes but is also likely to miss out real bubble. In practice, this value ought to
adjusted to different applications.

3.3.4 Obtaining Foreground Mask

After all these two steps, we obtain the original version of the foreground mask.
The dark pixels(0) denotes background, gray pixels(127) denotes shadow and white
pixels(255) denotes foreground.

Figure 7 shows the typical result of detection with small bubbles. Small bubbles
survives for less than the period of frame rate. Therefore, it is unlikely that there
will be any individual bubbles appearing in two consecutive frames.

Figure 7: Raw Foreground Mask with Small Bubbles
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However, for large bubbles, they survive much longer and the possibility of overlap-
ping increases, especially on the focal point. For this reason, the area inside the
overlapping large bubbles stays dark for a long time while the outer areas experienc-
ing morphological change, leading the model to falsely predict these pixels into the
background.

Figure 8: Original Image in Gray-scale and Raw Foreground Mask

Post-processing is required to

• eliminate grained noise and decide on the shadow pixels

• fill up the holes inside bubble contour area

3.4 Post-processing

3.4.1 Shadow Threshold

The reason why pixels are sorted into shadow is that when strong deviations occur
regionally, these regioned will be classified as foreground in time domain k-NN
classification. However, in spatial domain k-NN classification, the model found those
pixels to be more related to their background neighbors. When time and spatial
domain results do not concur, the dispute is logged by classify these pixels as shadows.

To decide on the fate of these shadow pixels, we calculate the number of each type of
pixels, if the number of shadow is relatively small compared with foreground pixels,
then they are merged into the foreground (as in Figure 9-ab). Else if their number
far exceeds that of the foreground, they are then merged into the background (as in
Figure 9-cd).
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(a) Strong Shadow (b) Strong Shadow Histogram

(c) Light Shadow Histogram (d) Light Shadow Histogram

Figure 9: Shadow-Foreground Histogram

3.4.2 Morphological Operations

Erosion and Dilation

Erosion operation erode away the boundaries of foreground object(white). The kernel
(an odd number n*m matrix of shape cross, rectangle or ellipse) slides through the
image (as in 2D convolution). A pixel in the original image (either 1 or 0) will be
considered 1 only if all the pixels under the kernel is 1, otherwise it is made to zero.

Dilation is just opposite of erosion. Here, a pixel element is ’1’ if at least one pixel
under the kernel is ’1’. So it increases the white region in the image or size of
foreground object increases. Normally, in cases like noise removal, erosion is followed
by dilation. Because, erosion removes white noises, but it also shrinks our object. So
we dilate it. Since noise is gone, they won’t come back, but our object area increases.
It is also useful in joining broken parts of an object. [13]
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Closing and Opening

Opening is just another name of erosion followed by dilation. It is useful in removing
noise.

Closing is for Dilation followed by Erosion. It is useful in closing small holes inside
the foreground objects, or small black points on the object.[8 pt] We perform two
iterations of Opening operation by a (5x5) elliptical kernel and then two iterations of
Closing Operation by a (9*9) elliptical kernel on the raw mask, whose result yields
Figure 10 with all the small holes filled and exterior noise filtered.

Figure 10: Before and after Morphological Operation

3.4.3 Flood-fill

This step is only for images containing big overlapping bubbles.

To fill up the big holes, we apply the "floodfill" method. The word vividly describes
how this works: First, starting from the right up corner we start to "flood" the whole
image - the initial point can be seen as the root, from the root, a search is started in
three directions, namely right, down and right/down. Using depth-first-search(DFS)
we go through all the points on the image plane, setting the locations where the the
original mask image is ’0’ to ’1’(or 255). The DFS algorithm will not go into any
node that is featured ’1’(or 255) on the original mask. - We can view the white areas
on the original mask as "hign land" and with a flood coming through, all the high
land and protected basin will not be affected. Then when we bit wise inverse the
flooded region, high land and basins are extracted. Adding back this extracted region
to the original mask, any holes (or basins) will be filled up.

Noticing that the contours of the overlapping bubbles may not be connected. We
first dilate the raw mask by 3*3 square then perform floodfill, and repeat "dilate then
floodfill" until there is no more holes to fill. Of course, dilation distort the original
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image. So after floodfill, we also reconsider the segmented contour region on the
original gray-scale image will binary threshold. This way, the original shape of the
bubble can be reserved.

(a) Raw Mask (b) Shadow-Foreground Histogram

(c) Floodfill 1st Iteration (d) Floodfill 2nt Iteration

Figure 11: Flood-fill Demonstration

3.5 Performance Analysis

• Small bubbles with occasional occurrence

Test subject is 276 frames with only 8 frames (human count) containing one
bubble. There is strong intensity variation influences. The test result fits into
the human count result as is shown in Figure 12. x-axis numbers the bubble,
y-axis is the size of the bubble. However, possible limitations include:

First, strong intensity fluctuation could result in scattered foreground mask.
These frames are typically discarded, but if bubble appear in these frames, it
will be missed.
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Table 1: Small Bubble Count Performance
Human Count Computer Count Percent Match

77 89 84.42%
32 33 97.87%
17 19 88.23%
124 126 98.39%

Second, if the bubble size is similar to that of a dark noise, it will also not be
detected. However, human inspection is also expected to fail should this occur.

Figure 12: Result for Small bubbles with occasional occurrence

Other test result is listed in Table 1. Human count could also be reliable, but
for now we assume that human count result is the "ground truth". In this way,
the average percent match is 92.23%.

• Big bubbles with rapid occurrence - Overlapping

Test subject is 335 frames with 1-7 bubbles appearing in every frame. Human
eyes will not be able to count all of them. Figure ?? demonstrates the counting
result with no overlapping check. Any contour area segmented are treated as
one individual bubble.
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Figure 13: Result for Big bubbles - No Overlapping Check

With overlapping check, segmented contours are sent to Chapter 4 for fitting.
The final counting result for the subject video is shown in Figure 14.

Figure 14: Result for Big bubbles - Overlapping Check

Precision with counting rapidly appearing big bubbles cannot be fully evaluated
since it is simply a far too demanding task for human eyes. But by looking into
the debug detection images, almost all the bubbles are successfully detected
and segmented. We conservatively estimate the counting precision to be over 80
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4 Overlapping Bubble Counting
Algorithm

After bubble foreground is extracted from original images, we are able to count the
total numbers, positions and areas of bubble for the subsequent analysis.

Figure 15: Detected Bubble Example

4.1 Previous Work

Traditional circle detection involves circle Hough Transform (CHT). The circle Hough
Transform is a feature extraction technique for detecting circles.[14] It is a special-
ization of Hough Transform. The circle candidates are produced by “voting” in the
Hough parameter space and then select the local maxima in a so-called accumulator
matrix.[15]

In a two-dimensional space, a circle can be described by

(x− a)2 + (y − b)2 = r2 (10)

where (a, b) is the center of the circle, and r is the radius. If a 2D point (a, b) is fixed,
then the parameters can be found according to (10). The parameter space would be
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three dimensional, (a, b, r). And all the parameters that satisfy (x, y) would lie on the
surface of an inverted right-angled cone whose apex is at (x, y, 0). In the 3D space,
the circle parameters can be identified by the intersection of many conic surfaces
that are defined by points on the 2D circle. This process can be divided into two
stages. The first stage is fixing radius then find the optimal center of circles in a 2D
parameter space. The second stage is to find the optimal radius in a one-dimensional
parameter space.

Hough Transform is widely used in circle detection. However, it only works well on
nearly-perfect circles without too much noises, which is not the case in this project.

4.2 Major Problems

The major challenges we encounter in bubble counting are

• overlapping phenomenon

• non-circular shape

• boundary noise and zigzags

Overlapping is very common between bubbles. We have to infer the centers and radii
from arcs of the circles that overlap with each other.

Another important problem that undermines the effects of circle detection is that the
bubbles are hardly circular. Both small-scale noises such as zigzags on the boundary
and large scales of noises that contort the circular shape of the bubble are everywhere,
which makes it extremely hard to perfectly fit a bubble with circle.

4.3 Algorithm Overview

We come up with a new algorithm that tackles the problem. It uses part of the circle,
namely arc, to infer the position of center and length of radius. To make things clear,
we will use program generated overlapping circle image to explain the algorithm.
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Figure 16: Generated Overlapping Circle Image

4.3.1 Boundary Extraction

The first step of the algorithm will be extracting the boundary of foreground. Many
useful boundary extracting algorithm can be applied here, including erosion or more
complicated Canny edge detection. Considering the features of the bubbles, which are
filled black circles with white background, there is no disturbing gray level information
that is common in general pictures. As a result, simple erosion can perfectly extract
the boundary and there is no need to suffer the time-consuming Canny detector.

Figure 17: Extracted Boundary

4.3.2 Feature Points Extraction

After we have the boundary of the bubbles, we are interested in the feature points on
the boundary. Feature points are those points that have strong gradient variation
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and are likely to be the intersection points of different circles.

Boundary Points Sorting

For gradient calculation, we first need a way to sort the boundary points in clockwise
or anti-clockwise order.

Consider the 8-neighborhood of a certain pixel, we want to find the next pixel in the
points sequence based on the current and previous pixel, which we have knowledge
about. We define two directions. The direction that the boundary “comes from”,
denoted by D1, and the direction that the boundary “goes to”, denoted by D2.

Figure 18: Direction of Previous and Next Pixel

In both D1 and D2, there are at most 2 points in the direction, which are the one on
the 4-neighborhood (edge points) and the one on the 8-neighborhood (corner points).
It is important to notice that if there are 2 points in D1 or D2 direction, then the
next or previous point must lie in the 4-neighborhood and we should not take the
point in the 8-neighborhood into account. If there is only one point in D1 or D2

direction, we will just take that very point as previous or next point.
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Figure 19: Positions of Previous and Next Pixel

After we have this analysis, we can do the points sequence sorting. We first find the
leftmost point in the boundary (take the lowest point if there are multiple leftmost
points) as the initial point. At each time, we check the 8-neighborhood of the current
point. Since we know the previous point we find, we have the knowledge of the D1

direction. We remove all the points (1 or 2) in D1 direction and the points left are
on the D2 direction. We then check the number of the points on the D2 points. If
there are 2 points on the direction, we take the one on the 4-neighborhood as next
point and if there is only 1 point, we directly take it as the next point. We iterate
this algorithm the initial point is encountered again. When the algorithm stops,
we will have a sorted boundary sequence, which will help us do the gradient calculation.

Gradient calculation

When we have the sorted boundary sequence, we should calculate the gradient. Since
in real laser shadowgraph, the boundary contains strong noise like zigzag, it is unwise
to directly calculate the gradient based on points position.

We come up with 2 ways to calculate the gradient. The first way is to take average
gradient among K nearest points. This helps reduce the noise, but it requires much
computation. The second way is to sample the boundary points such that only 1 point
in every N continuous points in the sequence is taken into account. This reduces both
the noise and the computational complexity, but it may lead to some information
loss. In practice, we use the latter one. Also, in practice, to avoid the information
loss, we can change the sampling step size and do multiple sampling, then we can
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take the best result.

After we have the gradient, we have to set a criterion to decide whether some points
are feature points and others are not. This can be done by find the left gradient and
right gradient of a certain point and take difference. In ideal mathematical analysis,
if a curve is smooth, say, it is first-order differentiable, then the left derivative should
be equal to right derivative. But in this case, since we only make approximations
to the direction of both sides, the differencing method works. The steps are simple.
We just calculate the gradient using the methods mentioned in previous part and we
have the gradient in one direction, say, clockwise. Then we reverse the whole point
sequence, and calculate the gradient again. This time we have the anti-clockwise
gradient. After we have the gradient of both directions, we can make difference, take
absolute value and calculate the corresponding angle on this point. If the angle is
near 0 or near π, then we consider this point “smooth”, which means this point is not
likely to be a feature point. And if the angle is near π/2, then is point is likely to be
a feature point that lies on the intersection of 2 circles.

4.3.3 Arc Extraction

After we have the feature points, we can extract the arc between 2 feature points.
The reason why feature points are important is that we can assume that the arc that
lies between 2 consecutive feature points does not belong to different circles. In other
words, it is a complete circle without interference and we can use this arc to infer the
whole circle.

Given 2 consecutive feature points P1 and P2, we first draw a line that connects
the 2 points and denote it L. In most case, the polygon that connects all the feature
points is convex, which means that all the other vertexes lie on the same side of the
edge connecting 2 given vertexes. So we can just randomly pick one remaining feature
point, plug its position into the expression of L and then find the sign. Now we plug
the position of all the points on the boundary to the expression. It is clear that the
arc between 2 selected points will have a different sign and we remove all the points
with the same sign.
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Figure 20: Arc Extraction

Sometimes this step will not remove all the other points that we are not interested
in because some of the points that belong to other arc will also have a different. In
that case, we draw 2 perpendicular line with respect to L that passes P1 and P2

and denote them L1 and L2. Similarly, we remove all the points that lie outside the
area encompassed by L1 and L2 using the same sign deciding method. Although
sometimes this will also remove some of the points on the interested arc, the remaining
points are enough for us to decide the position and radius of the circle.

4.3.4 Finding Center and Radius

When we extract the arc that we are interested in, we can now find the center and
radius of the circle that the arc belongs to.

To do this, we will first find the perpendicular bisector PB of L. It is obvious that
the center must lie on PB. So for every point S on PB, we calculate the distance
between S and every point on the arc and store them in a array DS . [8 pt] Also, we
notice that if S is the center, then every point on the arc will have the same distance
to S, which means that the variance of D should be 0. As a result, we will just find
the S with minimum variance of DS . This point should be the center and the average
of distance should be the radius.
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Figure 21: Perpendicular Bisector

todo (11)

We do this step on every pair of the consecutive feature points and we will find all
the candidates of the circles.

4.3.5 Merging and Removing Redundant Circles

In real practice, it is very common that the feature points we find do not really lie on
the intersection of 2 circles due to the boundary noises. As a result, the algorithm
may detect some redundant circles. So we must introduce some mechanism to merge
the redundant circles. Besides, thanks to the unavoidable noises, some circles that do
not belong to the bubbles might be detected, and we must come up with some ideas
to remove them.

There are 2 ways to check and merge circles. The first one checks the distance between
centers. If the centers of 2 or more circles lie too closely within some threshold, we
will merge them to one circle by taking average of the centers and radii.
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Figure 22: Closely Located Circles

The second way is to check the overlapping area. In real practice, chances are that
one small circle lies within another large circle. Under this circumstance, the small
circle should not be considered as a detected circle and must be remove. We can do
this by checking the overlapping area of every pair of circles. If the overlapping ratio
surpasses some threshold, we will remove the smaller circle.

Figure 23: One Circle Within Another

For the second problem, there is also a way to tackle it. We will check the ration
of the overlapping area between every detected circle and the original bubbles to the
area that belongs only to the original bubbles or to the detected circle. We call it
the ration of “overlapping “ to “differencing”. If the ratio is too small, then we can
decide that the detected circle lies too much outside the original bubbles and should
be removed.
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4.3.6 Single Circle Detection

After so much algorithm introduced, we are finally able to detect the overlapping
circles. However, there is still one thing left. Our algorithm does not work for single
circle because our algorithm is based on finding feature points and according to our
definition, a perfect circle does not have any feature points.

A common idea will be that if we do not detect any feature point, we will consider the
image as one circle. The problem is that in real practice, there are many edge noises.
So besides the feature points we desire, we will still find some other points that do
not lie on the intersection of circles due to the unavoidable zigzags. Fortunately, these
undesired points will not interfere our following detection thanks to the redundant
circles merging mechanism. However, we have to find another way to decide whether
the picture has just one circle.

The idea is simple. We first find the leftmost, rightmost, uppermost and lowermost
points in the foreground and use these points to decide the width and height of the
foreground. If the difference of width and height surpasses some certain threshold,
then the foreground cannot be one circle because the width and height of a circle are
equal. If the difference is within the threshold, we then draw a circle using the four
points and check the overlapping ratio just the same as we do in the previous steps.
If the overlapping ratio surpasses certain threshold, we will recognize the bubble as
one circle.

4.4 Performance Analysis

We tested the algorithm both on program-generated perfect overlapping circles and
real overlapping bubble images.

4.4.1 Test on Program-generated Circles

A typical test image and its corresponding result are shown below.
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(a) Program-generated Circles (b) Result

Figure 24: Test on Program-generated Circles

4.4.2 Test on Real Bubble Images

A typical test image and its corresponding result are shown below.

(a) Real Bubble Images (b) Result

Figure 25: Test on Real Bubble Images

We tested the algorithm on 135 frames grabbed from real experiment bubble images
and the accuracy reaches 89.6%.
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5 Ultrasound Signal Recovery

Because the invisibility of ultrasonic wave, there is no direct method to see ultrasonic
wave. In our experiment, we placed a laser generator in the one side of the water tank
and we placed a light sensor in another side of the water tank. The laser generator
would emit laser toward the water and the light sensor would generator electric signal
whose frequency and amplitude are relative to light property. When there occurs
waves in the water, the water refractive index will change which cause light intensity
changed. So The light intensity signal measured by light sensor can reflect some
characters of ultrasonic wave.

Figure 26: Sample Ultrasonic Waveform

However there is some drawback of this method. A major bottleneck encountered
with such measurements is the ingress of external interference (usually of very
high amplitude comparable to signal) directly affects the quality and reliability of
the acquired signal data. Major external interferences encountered during on-site
ultrasonic signal measurement and their sources are:

• Discrete spectral interferences (DSI) from radio transmissions and power line
carrier communication systems.

• Noise caused by laser generators.

• Noise caused by impurity of water.

In addition to the above sources, other noise sources that can possibly exist in a
ultrasonic measuring circuit are, random noise from components. In most cases, the
amplitude of these external interferences so large that it is so hard to find the waveform
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of ultrasonic wave in the signal data, thereby reducing the credibility of the ultrasonic
wave signal. Traditional method to solve this problem is to do average sampling.
The most common average sampling number of this sort signal is 200. Only after
this operation can we extract ultrasonic waveform from signal. With the advent of
high-speed computers and fast A/D converters, digital signal measurement became a
reality, and many digital noise suppression method evolved, such as, moving averages,
FFT thresholding,digital filtering (infinite impulse response, IIR and finite impulse
response, FIR), adaptive filtering. Most of the above mentioned methods mainly
deal with the removal of sinusoidal interferences. It is now a commonly accepted fact
that, removal of such narrow band interferences is not difficult. However, the main
problem that continues to persist is that we have no information of when the signal
occur and the center frequency of signal. The frequency of signal ranges from 2MHz
to 15Mhz, which is a very large range.

5.1 Drawback of Fourier Transform and Short-time
Fourier Transform

Fourier Transform is a integral decompose method to decompose signal into sin signals
and cos signals. Through it we are able to know the frequency band of signal, but we
can’t not know when this signal occur and how long that signal last. So we lose the
information of the time. To conquer the drawback of Fourier Transform, short-time
Fourier Transform is proposed. The idea of it is to divide signal into many shorter
segments by window function. And then compute Fourier transform separately on
each shorter signal segment. By changing the size of time period we can plot the
changing spectra as a function of time. However, Short-time Fourier Transform also
has its pitfalls. One of the pitfalls of the STFT is that it has a fixed resolution.
The width of the windowing function relates to how the signal is represented—it
determines whether there is good frequency resolution (frequency components close
together can be separated) or good time resolution (the time at which frequencies
change). A wide window gives better frequency resolution but poor time resolution.
A narrower window gives good time resolution but poor frequency resolution. These
are called narrowband and wideband transforms, respectively.
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5.2 Wavelet Transform

5.2.1 Brief Introduction To Wavelet Transform

A wavelet is a small wave, which has its energy concen- trated in time, and a tool
meant for analysis of transients and non-stationary or time varying signals. Just as
Fourier analysis consists of decomposing a signal into sine waves of various frequencies,
similarly, wavelet analysis is the breaking up of a signal into shifted and scaled version
of mother wavelet.Continuous wavelet transform (CWT) of a signal x(t) ⊆ L2(R) is
defined as

CWTψ(τ, s) =
1√
|s|

∫
x(t)ψ∗ t− τ

s
dt

where, function φ(t) is the mother wavelet. It is ,a prototype for generating the
other window functions, which are dilated or compressed and shifted versions of
mother wavelet. φ the shift operator (translation), s is the scaling function and
∗ stands for complex conjugation. Wavelet transform maps a time-domain signal
into a two dimensional array of coefficients, thus localizing the signal in both time
and frequency domain simultaneously, whereas, Fourier transform can only give
the frequency information. However, CWT is computationally expensive and also
generates a lot of redundant data. To circumvent these drawbacks, an effective
implementation applicable to discrete signals, called discrete wavelet transform
(DWT) was formulated using suitable lowpass and high- pass filters, that satisfy
certain mathematical constraints. An elegant procedure called the Multi-resolution
Signal Decomposition (MSD) technique is implemented through this method, which
is the primary reason. for the widespread use of wavelets.

5.2.2 Discrete Wavelet Transform

In Discrete wavelet transform, a time-scale representation of a digital signal is obtained
using digital filtering technique. Filters of different cutoff frequencies are used to
analyze the signal at different scales. The time-domain signal is passed through a
series of highpass filters and down-sampled by two to analyze the high frequencies
(referred to as detail components), and it is passed through a series of lowpass filters
followed by down-sampling by two, to analyze the low frequencies (called approximate
components). These highpass and lowpass filters constitute ‘quadrature mirror filters’,
and are exactly half-band filters, thus enabling a perfect error-free reconstruction
of the signal. For reconstruction, the above procedure is fol- lowed in reverse order
i.e. the signals at every level are up-sampled by two and passed through a set of
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synthesis filters (synthesis filters are derived from analysis filters). Thus, for an M
level decomposition-reconstruction, the input signal can perfectly be recovered by
adding the reconstructed time- domain approximate component at level M and all
the reconstructed time-domain detailed components from level 1 to M i.e.

ReconstructedSignal = (Approximatecomponent)M +

M∑
j=1

(Detailcomponent)j ...

The MSD method is inherently error-free, and this hap- pens to be a big advantage,
since the process by itself does not introduce any additional error.

5.3 Proposed Technique

The conventional wavelet denoising method involves calculation of the DWT coef-
ficients for a given signal and then passing the DWT through a threshold (fixed a
priori), and followed by reconstruction of the signal by taking the inverse wavelet
transform of the modified DWT coefficients. This method is known as soft or hard
thresholding. In the present problem, the amplitude of noise of the noise is almost
the same as signal. So soft thresholding and hard thresholding will not pursued
further in this paper. The proposed technique is basically an off-line technique and
has the advantages of low processing time and possibility of better reconstruction,
because the suppression of noise interferences is done in a joint time-frequency do-
main. This type of denoising consists of two phases. In the first phase, input signal
is decomposed into approximate and detail components up to a desired number of
levels with the help of multiresolution analysis. This is done by first choosing a
mother wavelet according to the signal characteristics. Once, the mother wavelet is
chosen, decomposition-reconstruction up to the required number of levels is carried
out by, scaling and dilating the mother wavelet. The numher of decomposition-recon-
struction levels can he chosen either by trial and error method or, as in this work,
was chosen from the information of sampling frequency. This is because the frequency
band of each decomposed component follows a dyadic rule, starting from the Nyquist
frequency. Once the approximate and detail reconstructed time-domain components
are computed, the second phase starts. This phase involves identifying those com-
ponents that correspond to all the ultrasonic signals, either by finding max energy
point or by the knowledge of frequency hands to which the PD pulses belong (this
is known from the bandwidth of the PD detector). Finally, the denoised signal is
obtained by discarding all the identified components from the summation process. In
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summary, the proposed wavelet method involves the following three steps:

1. Using a mother wavelet, the input signal is decom- posed into a pre− set (M)
number of levels, and this yields DWT coefficients.

2. The earlier methods worked with these DWTs. But, in the proposed method,
the DWTs are reconstructed to yield M levels of time-domain sequences (each
of length equal to original signal length). Each of these M levels, correspond
to a band of non-overlapping frequencies, and adding all M levels yields the
original signal. Thus, a joint time-frequency representation of the input signal
is obtained.

3. Denoising in the present method essentially consists of a visual inspection
of the M reconstructed time-domain components (or levels), and identifying
those that lie within the pass-band of the ultrasonic signal. In some special
cases, one or two extra bands on either side of the band-pass may have to be
chosen. Depending on sampling frequency and levels of decomposition, it is
easy to locate the bands that are to be retained. The rest of the time-domain
components are unwanted and discarded from the summation process.

5.4 Issues In Wavelet Method

During the implementation of the MSD approach, choice of some parameters connected
with MSD method has to be made. This is inherent to the method, and concerns
issues like choice of mother wavelet, number of levels of decomposition, etc. They are
briefly addressed below:

1. Selection of mother wavelet. This is a core question often asked, but a generalized
answer seems to be still elusive even to signal processing experts. Also, no direct
answers are available in literature. With this being reality, its choice in the
present work was based on a trial-and- error and guided by hints published in
literature on simi- lar type of work. Being well aware of this issue, the au- thors
have examined many wavelets and found Daubechies’ wavelet most suitable.
Further, many practi- cal examples have been included to demonstrate that the
wavelet selected was good enough for the task. A detailed comparative study of
all wavelets was not exclusively re- ported, as this was not within the identified
scope of the paper.
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2. Selection of number of levels for decomposition- reconstruction. The goal was
’to have sufficient resolution in frequency hands at lower frequencies, as low
frequency pulsive interferences were also to be eliminated. If lesser levels were
used, then PD signals and the low frequency interferences would be clubbed
together, and hence diffi- cult to segregate. Keeping this in mind, ten decomposi-
tion-reconstruction levels were chosen and found to be sufficient in most of the
cases.

5.5 Digital Simulation Setup

5.5.1 Basis For Comparison Of Technique

During the process of denoising, in addition to removal of noise components, the signal
component whose frequency is very close to the interfering frequency ranges also gets
removed (although, to a lesser extent). Thus, the signal component to be recovered
suffers from both attenuation and distortion. These two features may be quantified
by defining the peak amplitude and the correlation coefficient. An acceptable noise
suppression method should reject or suppress all the interferences and noise with
minimum attenuation and distortion of the ultrasonic pulse. In order to compare the
performance of various methods, the following indices have been considered:

Signal To Noise Ratio

The signal to noise ratio (SNR), illustrates the effectiveness of denoising operation.
It is defined as

SNR = 10 ∗ log
∑

i=1N Y
2(i)∑n

i=1(X(i)− Y (i))2
]

where,X(i) is the original reference signal, Y (i) is the denoised signal and N is the
number of samples. A positive value of SNR implies a greater power of the signal as
compared to the noise and a negative value of SNR implies a greater power of noise
as compared to the signal. As in practical records, there is no such reference signal
X(i) to compute SNR, only the extent of noise suppressed can he estimated. The
normalized noise reduction was computed as:

reductioninnoiselevel(dB) = 10 ∗ log
∑
i=1N

1

N
(Z(i)− Y (i))2
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where, Z(i) is the noisy signal acquired, Y (i) is the denoised signal and N is the
number of samples.

Reduction In Ultrasonic Amplitude

The percentage reduction in amplitude of the denoised signal with respect to the
reference signal is defined as

reduction =
X − Y
X

∗ 100

where, X is the peak amplitude (positive going peak in this case) of the origi-
nal(reference) signal and Y is the amplitude of the denoised signal recovered.

5.6 Results and Discussion

Figure 27: Result of processing Signal

Accuracy SNR
Reduction in Am-
plitude

69% cell5 cell6

From the table above, we can know that this method can’t identify the ultrasonic
wave from noise in some cases. Because in these case the energy of noise is larger than
the energy of signal. Apart from that, the data o SNR and reduction in amplitude
reveal that our method is effective and it can help us to find signal better.
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