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Abstract— The “German Traffic Sign Recognition Benchmark”
is a multi-category classification competition held at IJCNN 2011.
Automatic recognition of traffic signs is required in advanced
driver assistance systems and constitutes a challenging real-
world computer vision and pattern recognition problem. A
comprehensive, lifelike dataset of more than 50,000 traffic sign
images has been collected. It reflects the strong variations in
visual appearance of signs due to distance, illumination, weather
conditions, partial occlusions, and rotations. The images are
complemented by several precomputed feature sets to allow
for applying machine learning algorithms without background
knowledge in image processing. The dataset comprises 43 classes
with unbalanced class frequencies. Participants have to classify
two test sets of more than 12,500 images each. Here, the results
on the first of these sets, which was used in the first evaluation
stage of the two-fold challenge, are reported. The methods
employed by the participants who achieved the best results are
briefly described and compared to human traffic sign recognition
performance and baseline results.

I. INTRODUCTION

Recognition of traffic signs is a challenging real-world

problem of high industrial relevance. Although commercial

systems have reached the market and several studies on this

topic have been published, systematic unbiased comparisons

of approaches are missing and comprehensive benchmark

datasets are not freely available. Sign recognition is a multi-

category classification problem with unbalanced class frequen-

cies. Traffic signs show a wide range of variations between

classes in terms of color, shape, and the presence of pictograms

or text. However, there exist subsets of classes (e.g., speed

limit signs) that are very similar to each other. The classifier

has to cope with large variations in visual appearances due

to illumination changes, partial occlusions, rotations, weather

conditions, scaling, etc.

Traffic signs are designed to be easily detected and recog-

nized by human drivers. Accordingly, humans are capable of

recognizing the large variety of existing road signs with close

to 100 % correctness. This does not only apply to real-world

driving, which provides both context and multiple views of

a single traffic sign, but also to the recognition from single,

cut-out images.

We present the German Traffic Sign Recognition Benchmark

(GTSRB), a large, lifelike dataset of more than 50,000 traffic

sign images in 43 classes. We describe the design and analysis

of the IJCNN 2011 competition of the same name that was

built upon this dataset. We conducted experiments to determine

human traffic sign recognition performance and compare them

to the competition results. The competition is held in two

stages, and the first stage has just finished at the time of this

document’s writing. We asked the participants who achieved

the best results so far to provide brief descriptions of their

methods, which are presented together with the classification

accuracies.

The paper is organized as follows: Sec. II presents related

work. Sec. III provides details about the benchmark dataset.

Sec. IV addresses the competition protocol. Finally, the com-

petition results are reported and the so far best methods are

described in Sec. V before the conclusions in Sec. VI.

II. RELATED WORK

Several approaches to traffic sign recogntion have been pub-

lished. In [1], an integrated system for speed limit detection,

tracking, and recognition is presented. The classifier is trained

using 4,000 samples of 23 classes, with samples per class

ranging from 30 to 600. The individual performance of the

classification component is evaluated on a test set of 1,700

traffic sign images with a correct classification rate of 94 %.

Moutarde et al. present a system for recognition of European

and U. S. speed limit signs based on single digit recognition

[2] using a neural network. Unfortunately, they do not provide

individual classification results. The overall sytem including

detection and tracking achieves a performance of of 89 % for

U. S. and 90 % for European speed limits, respectively, on 281

traffic signs.

Broggi et al. [3] use several neural networks to classify

different traffic signs. Shape and color information from the

detection stage is used to select the appropriate neural network.

Only qualitative results are provided.

In [4], a number-based speed limit classifier is trained on

2,880 images. It achieves a correct classification rate of 92.4%
on 1,233 images. However, it is not clear whether images of

the same traffic sign instance are shared between sets.

Various approaches are compared on a dataset containing

1,300 preprocessed examples from 6 classes (5 speed limits

and 1 noise class) in [5]. The best classification performance

observed was 97%.

In [6], a classification performance of 95.5% is achieved

using support vector machines. The database comprises an
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Fig. 1. Screenshot of the annotation

impressive number of ∼36,000 Spanish traffic sign samples of

193 sign classes. However, it is not clear whether the training

and test sets can be assumed to be independent, as the random

split only took care of maintaining the distribution of traffic

sign classes (see Sec. III). To our knowledge, this database is

not publicly available.

Obviously, the results reported above are not comparable, as

all systems are evaluated on proprietary data, most of which is

not publicly available. Therefore, we present a freely available,

extensive traffic sign data set to allow unbiased comparison of

traffic sign recognition approaches.

III. DATASET

A. Data collection

The dataset was created from approx. 10 hours of video

that was recorded while driving on different road types in

Germany during daytime. The sequences were recorded in

March, October and November 2010. For data collection,

a Prosilica GC 1380CH camera was used with automatic

exposure control and a frame rate of 25 fps. The camera

images, from which the traffic sign images are extracted, have

a resolution of 1360×1024 pixels. The video sequences are

stored in raw Bayer-pattern format, but extracted traffic sign

images are converted to RGB color images [7].

Data collection and manual annotation was performed us-

ing NISYS Advanced Development and Analysis Framework1

(see Fig. 1).

We will use the term traffic sign instance to refer to a

physical real-world traffic sign in order to discriminate against

traffic sign images which are captured when passing the traffic

sign by car. The sequence of images originating from one

traffic sign instance will be referred to as track. Each instance

is unique. In other words, the dataset only contains a single

track for each physical traffic sign.

From approx. 133,000 labelled traffic sign images of 2,416

traffic sign instances in 70 classes, the GTSRB dataset was

compiled according to following criteria:

1) Discard tracks with less than 30 images.

2) Discard classes with less than 9 tracks.

1http://www.nisys.de

Fig. 2. A single traffic sign track

3) For the remaining tracks: If the track contains more than

30 images, equidistantly sample 30 images.

Step 3 was performed for two reasons. First of all, the number

of traffic sign images per track was very different as it strongly

depends on the velocity with which the car passed the sign.

Since subsequent images of a slowly passed traffic sign are

very similar to each other, these images do not contribute to the

diversity of the dataset. On the contrary, it causes an undesired

imbalance of dependent images. Secondly, in spite of the first

point, the visual appearance of a traffic sign does vary over

time. Far away traffic signs result in low resolution while

closer ones are prone to motion blur. The illumination may

change, and the motion of the car affects the perspective with

respect to occlusions. Fig. 2 provides an example. Selecting a

fixed number of images per traffic sign increases the diversity

of the dataset and also avoids an imbalance by strongly varying

numbers of nearly identical images.

The selection procedure outlined above reduced the number

of images to approx. 50,000 images of the 43 classes that are

shown in Fig. 3. The relative class frequencies of the classes

are shown in Fig. 4.

The set contains images of more than 1,700 traffic sign

instances. The size of the traffic signs varies between 15× 15
and 222 × 193 pixels. The images contain 10 % margin (at

least 5 pixels) around the traffic sign to allow for the usage of

edge detectors. The original size and location of the ROI of

the traffic sign is preserved in the provided annotations. The

images are not necessarily squared.

For the purpose of the competition, the dataset was split into

three subsets. Set I was published as training data, Set II as

test data for the online competition. Both sets may be used as

training data for the final competition which will be performed

on Set III (unpublished until then). Set I contains approx. 50 %,

sets II and III approx. 25 % of the images each. The split

was performed randomly, class-wise, and on track level, to

make sure that 1) the class distribution is preserved and 2) all

images of one traffic sign instance are assigned to the same set.

Each of the test sets is consecutively numbered and shuffled
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Fig. 3. Traffic sign classes
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Fig. 4. Relative class frequencies in the dataset

to prevent deduction of class membership from other images

of the same track. In contrast, the training set preserves the

temporal structure of the images, which could be exploited by

approaches capable of using privileged information [8].

B. Pre-calculated features

To allow scientists without a background in image pro-

cessing to participate, all three sets are provided with pre-

calculated feature sets. The following features are included:

1) HOG features: Three sets of differently configured HOG

features (histograms of oriented gradients) [9] are provided. To

compute them, the images were scaled to a size of 40×40 pixel

and converted to grayscale. The sets contain feature vectors of

length 1568, 1568, and 2916 respectively.

2) Haar-like features: This feature set was intended to

allow participants to apply feature selection methods if desired.

Just like for HOG features, images were rescaled to 40 × 40
and converted to grayscale. We computed 5 different types in

different sizes for a total of 11,584 features per image.

3) Color histograms: This set of features was provided

to complement the gradient-based feature sets with color

information. It contains a global histogram of the hue values

in HSV color space, resulting in 256 features per image.

IV. COMPETITION

The competition uses the dataset presented in Sec. III. It

consists of two evaluation phases. This paper focuses on the

first one that was performed in the run-up to IJCNN 2011.

This evaluation used Set I for training and Set II for testing.

A. Competition protocol

Participants had to classify individual images of the test set.

The performance was evaluated based on the 0/1 loss.

The training set was published seven weeks before the

first evaluation. This initial evaluation was designed as an

online competition. At the beginning of the evaluation, the test

set was provided to the participants. Results were uploaded

as CSV file to the competition website2 for evaluation. The

number of submissions was (initially) not limited (see Sec. IV-

C for details), to allow participating teams to submit results

for different approaches.

Since the test set contains images, participants were the-

oretically able to manually annotate the samples with the

correct class ID. Although restricted to only 3 days, the short

time frame of the evaluation phase could not guarantee that

cheating would not occur. Therefore, a second evaluation with

fresh data will be held as live competition at IJCNN 2011.

To allow more thorough training of the classifiers, the class

IDs for the test set have been published after the online

competition. Furthermore, this mitigates any advantages a

team may achieve for the final competition by investing the

efforts of manual annotation.

2http://benchmark.ini.rub.de
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B. Submission website

The website allows participants to upload their result files

and get immediate feedback about their performance. During

the online competition, results on the test set were instantly

published in a public leaderboard.

After the submission deadline, some result analysis features

were activated. The participants could get a more detailed

insight into their results by investigating the confusion matrix

and the list of misclassified images for each of their own

submissions.

We intend to introduce a second leaderboard based on the

final test set after the final competition. This ranking will

then be permanently open for submissions. Users will get

immediate feedback about their performance after upload, but

the results will not automatically be publicly visible. In order

to publish results, users have to provide publication details

about their approach.

C. Flaws in challenge protocol

As far as the online competition is concerned, the miss-

ing submission limit turned out to be problematic. A few

participants started flooding the leaderboard with results. For

some submissions, the method description did not even allow

for discrimination of the methods (either because it was too

cryptic or because it was the same name for all submis-

sions only extended with running numbers). We assume the

major difference between such submissions to be parameter

adjustments. However, optimization w. r. t. the test set causes

overfitting and biases the results. In order to protect the other

teams from this misbehavior, we had to introduce a submission

limit during the online competition. To avoid (or at least

mitigate) penalizing teams with only a couple of submissions,

we set the limit to ten submissions. This allowed most teams to

submit at least one more final result. For future competitions,

we would set a limit of three to five submissions and would

perhaps not show the exact ranking during the submission

phase.

V. RESULTS

The competition attracted more than 20 teams from all

around the world. A wide range of state-of-the-art machine

learning methods was employed, including (but not limited

to) several kinds of neural networks, support vector machines,

linear discriminant analysis, subspace analysis, ensemble clas-

sifiers, slow feature analysis, kd-trees, and random forests.

We present the results of the four best-performing teams in

addition to results of baseline algorithms and an experiment

to determine human traffic sign recognition performance. The

results that are reported in this section are summarized in

Tab. I. This table is limited to the top four teams and their

characteristic methods. Details about these methods can be

found in Sec. V-C. Our results are shown with team name INI-

RTCV. The complete result table is available at the competition

website.

TABLE I

RESULT OVERVIEW. ID DENOTES THE SUBMISSION ID TO IDENTIFY THE

RESULT IN THE LEADERBOARD AT THE COMPETITION WEBSITE.

CCR (%) Team Method ID

98.98 IDSIA Committee of CNN and MLP 197

98.97 sermanet 2-layer CNN 178

98.81 INI-RTCV Human Performance 199

97.88 VISICS IK-SVM 183

97.35 VISICS SRC + LDAs 184

96.87 noob LDA + VQ 84
.
.
.

.

.

.

96.32 INI-RTCV LDA 2
.
.
.

.

.

.

73.89 INI-RTCV 3-NN 7

A. Baseline

We report three kinds of baseline results: Linear discrimi-

nant analysis (LDA) on HOG features, k-nearest neighbor (k-

NN) on HOG features and human performance. The LDA is

based on the implementation in the Shark Machine Learning

Library3 [10]. Nearest neighbor results were computed on all

HOG feature sets for 1-NN and 3-NN using l2-distance. In

Tab. I, only the best results for each baseline algorithm is

reported. LDA was performed on HOG 2, 3-NN on HOG 1

feature set. The results for the other two HOG feature sets and

1-NN were very similar.

B. Human performance

To determine the human traffic sign recognition perfor-

mance on isolated images, the test set was presented in chunks

of 350 randomly chosen images to 36 test persons. Over all

subjects, each image was presented exactly once for classifica-

tion. Each image was presented in two resolutions (see Fig. 5)

— the original resolution of the image and scaled to a height of

190 pixels to improve readability of small images. The black

border around the scaled image was chosen to improve contrast

perception for dark and low-contrast samples. The test person

assigned a class ID by clicking the corresponding button.

Please note that this assignment was for testing purposes only,

not for generation of the ground-truth data, as this was done

on the original camera images (s. Sec. III-A).

C. Top-ranking methods

This subsection provides an overview of the best-performing

methods in the competition. The method descriptions are

authored by the participants themselves. They are ordered

according to their ranking in the competition.

1) Team IDSIA: Team IDSIA consists of Dan Ciresan, Ueli

Meier, Jonathan Masci and Jürgen Schmidhuber from IDSIA,

USI, SUPSI, Switzerland4.

3http://shark-project.sourceforge.net
4{dan, ueli, jonathan, juergen}@idsia.ch
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Fig. 5. Test application to determine human performance

Committee of CNN and MLP: ”Our approach uses a

flexible, high-performance GPU implementation of a convo-

lutional neural network (CNN). We improve the performance

of a single CNN by forming a committee that also includes a

multilayer perceptron (MLP) trained on the provided features.

The architecture of a CNN is characterized by many build-

ing blocks set by trial and error, but also constrained by

the data. In most studies a fixed, handcrafted architecture

is used to perform the experiments. With respect to other

implementations of similar neural network architectures on

GPUs [11], [12] that are hard-coded to satisfy the hardware

constraints of the GPUs, our implementation [13] is flexible

and fully on-line (i.e. weight updates after each image). As

subsampling layers we use max-pooling layers which are

crucial for invariant object recognition. CNNs with a max-

pooling layer consistently outperform conventional nets [14].

All CNNs have seven hidden layers. The output layer has

43 neurons, one for each class.

We select the ROI of the original images and resize it to

48× 48 pixels. The contrast of each image is normalized in-

dependently. We try different contrast normalization methods.

The best one proved to be histogram equalization.

We use a system with a Core i7-920 (2.66GHz), 12 GB

DDR3 and four GTX 580 graphics cards. The implemented

CNN has a plain feed-forward architecture trained by on-

line gradient descent. We split the provided training set in

training and validation sets and train various architectures.

The best architecture is then trained on all images from the

training set. Weights are initialized from a uniformly random

distribution. Each neuron’s activation function is a scaled

hyperbolic tangent.

After having trained all the individual CNNs and MLPs,

we form various committees. The MLPs have 1 hidden layer

with 200 hidden units and are trained in batch mode using

second order information. Individual MLPs perform worse

than CNNs. Being trained on features, however, they offer an

additional source of information and might correctly classify

images misclassified by the CNN. Since both CNNs and MLPs

produce output class probabilities, we can easily average the

corresponding neuron’s outputs. This averaging results in a

slight performance boost, and allows us to obtain the best

result with a committee of a CNN and an MLP trained on

HOG features (HOG 3).”

More details concerning this approach can be found in [15].

2) Team sermanet: Team sermanet consists of Pierre Ser-

manet and Yann LeCun from Courant Institute of Mathemat-

ical Sciences at New York University, United States5.

Convolutional Neural Networks: ”Convolutional Net-

works (ConvNets) [16] are a biologically-inspired architecture

that can learn invariant features. While traditional vision

methods use hand-crafted features such as HOG, ConvNets

actually learn each feature extraction stage. Features can

therefore be optimized for a given task and learned without

prior knowledge for any new modality where our lack of

intuition makes it difficult to engineer good features. Multiple

stages of features extraction provide hierarchical and robust

representations to a multi-layer classifier. Each stage is com-

posed of convolutions, non-linearities and subsampling. Non-

linearities used in traditional ConvNets are the tanh() sigmoid

function. However more sophisticated non-linearities such as

the rectified sigmoid and the subtractive and divisive local

normalizations are used here, enforcing competition between

neighboring features (both spatially and feature-wise). Outputs

taken from multiple stages can also be combined to enrich

features fed to the classifier with a multi-scale component.

We use the C++ open-source implementation of ConvNets

called EBLearn6 [17]. This architecture was trained by full

supervision of the (colored) traffic sign dataset (using 32×32
raw images) and reached 98.97 % accuracy during the first

phase of the competition. It is interesting to note that superior

networks have since then been obtained without the use of

color information (fully described in [18]).”

3) Team VISICS: Team VISICS consists of Radu Timo-

fte and Luc van Gool from ESAT-PSI-VISICS/IBBT at the

Katholieke Universiteit Leuven, Belgium7.

a) IK-SVM based method: ”The method employs a fast

Intersection Kernel Support Vector Machine (IK-SVM) [19]

over concatenated HOG features. We used computed pyrami-

dal HOG features over resized 28×28 pixels patches using the

same settings used in [19] for handwritten digits classification.

These were concatenated with the HOG 2, as provided by

GTSRB, giving a 2172 + 1568 dimensional feature space.

We trained 43 one-against all models (one for each class)

and the classification decision was taken by picking the class

corresponding to the best estimated probability in the models’

outputs. While running the classifiers over the testing data is

relatively fast, in order of minutes, the time spent for training

is big, over 15 hours.”

b) l1-minimization based method: ”This is a sparse

representation-based classification (SRC) inspired by the in-

5{sermanet,yann}@cs.nyu.edu
6http://eblearn.sf.net
7{Radu.Timofte, Luc.VanGool}@esat.kuleuven.be
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creasingly popular field of compressed sensing (CS). The

testing query samples are assumed to be recovered (with a

very low error) as a linear combination of the sufficiently

large set of training samples. Furthermore, the combination

weights corresponding to the training samples from the same

class as the query sample to recover tend to be large (in l1-

norm sense). In an ideal case the remaining weights are zero.

This is a sparse linear combination, with about 1

C
nonzeroes,

where C is the number of classes. We are interested in this

sparse vector of weights which we can obtain by solving a

l1-minimization problem formulated as in [20]. We use the

Homotopy solver [21] stopped after reaching a sparse support

of less than 20 nonzeroes. In our challenge entries we do

not use the cross-and-bouquet model which deals explicitly

with noise, heavy corruption, occlusion in the query sample.

As basic features we use HOG Sets 1 and 2 (as provided

by GTSRB), and the raw grayscale pixel values (I). The

features are projected using the obtained direction vectors by

applying Linear Discriminant Analysis (LDA) method. Thus,

we work on low, 42-dimensional spaces and benefit from the

discriminant power of LDA based on the training labels. For

each type of features we separately compute LDA projection

matrices. The final used representation for the top scoring SRC

method is a concatenation of the LDA projections of each type

of features (I, HOG 1 and HOG 2). The concatenated features

were normalized by l2-norm. The running time was about two

hours on a single core.”

4) Team noob: Team noob consists of Nhat Vo8, Subhash

Challa9 and Bill Moran10 from University of Melbourne,

Australia, and Duc Vo11 from NICTA, Australia.

Discriminant Analysis on HOG features and Vector

Quantization: ”The proposed idea is based on histograms of

oriented gradients (HOG), linear discriminant analysis (LDA),

and vector quantization (VQ). HOG is used to capture lo-

cal object appearance and shape within traffic sign images,

followed by LDA. To further improve the recognition rate

and recognition speed, we apply VQ on projected samples to

remove outliers or bad samples in training set. A recognition

rate of 96.87 % was obtained in the competition. This whole

algorithm called HOG+LDA+VQ can briefly be summarized

as follows:

• HOG feature vectors are extracted from training images.

We use precalculated HOG 2 features provided with

GTSRB dataset.

• LDA is then performed on these HOG 2 features to find

discriminative projections. All training HOG features will

be projected on this projection to form discriminative

projected features.

• VQ by k-means algorithm is performed on projected

features of each class to find some representatives or

codebooks which are used as templates in recognition

8n.vo@pgrad.unimelb.edu.au
9subhash.challa@nicta.com.au
10b.moran@ee.unimelb.edu.au
11dvo@nicta.com.au

stage. By doing this, we can remove outliers or bad train-

ing data, highly speed up recognition time and improve

the performance.”

D. Result analysis

As can be seen in Tab. I, the best performing teams achieved

a very high recognition accuracy which is comparable to

humans. To gain a deeper insight into the results, the traffic

sign classes are grouped into subsets of similar signs according

to Fig. 6. The individual results per team and subset are listed

in Tab. II. Since both the LDA and the k-NN approaches

produced very similar results for the different HOG feature

sets, only the best result each is considered. Fig. 7 shows the

confusion matrices for the different approaches. The classes

are ordered by subsets as defined in Fig. 6a to 6f, from left-

to-right and top-to-bottom respectively. The grey lines separate

the subsets.

Notably, all solutions — both human and machine — share

one similarity, although to a different extent. A clustering of

errors in the top-left corner, that is, in the speed limit subset,

can be observed. Low resolution and motion blur impede the

discrimination of the different numbers.

Considering the other prohibitory signs (s. Fig. 6b), it is

noticeable that the error is generally smaller than for the speed

limit signs, although this subset contains two very similar signs

as well (no overtaking for cars and trucks). However, in case

of misclassification, they were usually confused within subsets

(a) and (b).

The derestriction signs cause little problems. The largest

errors are provided by the 3-NN classifier which mostly

confuses the derestriction signs among each other.

The blue mandatory signs are nearly perfectly recognized by

humans. The machine-learned classifiers perform worse. The

errors concentrate mostly on the sign classes roundabout, pass

on right, and pass on left. The latter two are generally mounted

close to the ground which makes them easily accessible. Their

readability is often impaired by stickers or spray paint. The fact

that they are mostly mistaken for speed limits can be attributed

to the use of HOG features — which do not contain any color

information — in most algorithmic approaches. Color features

were only used by Team sermanet which reduces the confusion

of the blue mandatory signs with speed limits to a minimum.

For the danger signs, a similar observation can be made.

The focus on edge features allows classifiers to discriminate

the triangular signs from other subsets, but leads to confusion

within this group of traffic signs. Obviously, the provided HOG

features capture the general sign shape well, but are not dis-

criminative enough to distinguish the different pictograms. The

group of human test subjects outperforms most algorithmic

approaches. Only the convolutional neural networks achieve a

comparable performance.

Finally, the unique signs are nearly perfectly classified.

Since they are very different in their general shape, even the

nearest neighbor approach — which generally only provided

moderate accuracy — achieves a very small error rate.
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(a) Speed limit signs (b) Other prohibitory
signs

(c) Derestriction signs (d) Mandatory signs

(e) Danger signs (f) Unique signs

Fig. 6. Subsets of similar traffic signs

(a) IDSIA – Committee of CNN/MLP (b) sermanet – 2-layer CNN (c) Human performance (d) VISICS – IK-SVM

(e) VISICS – SRC + LDAs (f) noob – LDA + VQ (g) INI-RTCV – LDA (h) INI-RTCV – 3-NN

Fig. 7. Confusion matrices. The grid lines separate the traffic sign subsets defined in Fig. 6. Values in [0,1]; White denotes zero, (0,1] is colored red to
yellow to green.

TABLE II

INDIVIDUAL RESULTS FOR SUBSETS OF TRAFFIC SIGNS. BOLD TYPE DENOTES THE BEST RESULT(S) PER SUBSET.

Speed limits Other

prohibitions

Derestriction Mandatory Danger Unique

Committee of CNN/MLP 99.14 99.57 100.00 97.89 98.83 100.00

2-layer CNN 98.87 99.80 99.00 97.78 98.72 100.00

Human Performance 97.39 99.59 99.67 99.72 99.04 99.90

IK-SVM 97.91 99.25 99.67 96.78 96.17 99.95

SRC + LDAs 97.63 99.46 100.00 96.05 94.54 99.95

LDA + VQ 95.73 98.50 99.33 96.72 95.39 99.90

LDA 95.76 97.28 99.33 95.00 95.00 99.35

3-NN 61.39 87.28 87.00 93.39 53.83 98.76
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In many cases, the human errors are much more scattered

than the algorithmic results. Except for the speed limit subset,

most errors visible in the confusion matrices are caused

by single misclassifications. These errors can be partially

explained by the design of the test application, which di-

rectly advanced to the next image after one of the buttons

was clicked. Unintended mouse movements and double-clicks

could, therefore, easily cause accidental misclassifications.

This case was reported by some of the test persons.

VI. CONCLUSIONS

We presented the design and analysis of the ”German Traffic

Sign Recognition Benchmark” dataset and competition. The

results of the competition show that state-of-the-art machine

learning algorithms perform very well in the challenging task

of traffic sign recognition. The participants achieved a very

high performance of up to 98.98 % correct recognition rate

which is comparable to human performance on this dataset.

Some of the human error originated from the design of the

test application. For the final competition, we are confident

that human performance can be ”improved” by a few changes

to this application to prevent pure accidental misclassifications.

We are looking forward to the final competition at IJCNN

2011 which completes GTSRB competition. This session will

use the currently unpublished Set III. After the final session,

the complete dataset will be published. We intend to install a

new, permanent leaderboard on the competition website which

allows for submissions of new results and comparison of new

approaches. As many participants relied on the provided HOG

features, we are curious to see whether different features can

improve the recognition performance. For the future, we plan

to add more benchmark tasks and data to the competition

website. In particular, we consider to provide a benchmark

data set for the detection of traffic signs in full camera images.
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